MANAGING A VARIABLE WORKFORCE WHILE BEING COMPLIANT WITH THE HOLIDAYS ACT.

¿Maxtel

KEY POINTS

Managing a variable work force

- McDonald's employment make up
- Challenges of being compliant with a variable work force
- Defining a week
- Determining otherwise working days
- Gaining agreement
- Questions

McDonald's

- 170 Restaurants
- Employees per restaurants range from 20 employees up to 180 employees
- 10% company owned and operated
- 50 franchisees with ownership ranging from 1 store to 8
- One payroll provider across the system
- High reliance of integration with payroll and scheduling systems
- Large employer for first time employment

M : :Maxtel

Employment

- Over 10,000 employees
- Permanent / part time employees
- Schedules minimum two weeks in advance
- Employees set their preferred working times (times of the week in which they can be scheduled)
- Employees have agreed minimum hours to be scheduled, with the opportunity to work more
- Employees are able to take leave prior to a years service
- Allowances such as travel \& overnights are applicable
- Provides flexibility to workforce in the ability to swap shifts up to the day of work
\%Maxtel

CHALLENGES TO BEING COMPLIANT WITH THE HOLIDAYS ACT WHEN YOU HAVE A VARIABLE WORK FORCE

Defining what a week is when hours worked each week fluctuate.
Defining ordinary working days when days worked week to week vary.

Keeping the system succinct and uncomplicated for easy understanding, both with processing and for the employee.

Having significant automation without negating the need of applying a human lens.

Approving leave for an employee when applied for withou \dagger knowing what are OWD's at the time.
:Maxtel

Previous position

Working a payroll system in hours, that lends itself well to a variable work force but has opportunity in meeting the requirements of the Holidays Act when it comes to weeks.

Employee pay app where employees book leave, can swap shifts, view schedules, pay slips, update their personal details, request changes to things such as preferred working times, agreed minimum hours etc.

Current position

A payroll system that operates in weeks, continues to have high integration with other systems (scheduling). Maintains the flexibility required by the workforce

Employee pay app where employees book leave, can swap shifts view schedules, pay slips, update personal details, request changes to things such as preferred working times, agreed minimum hours etc

Future State

Employee pay app that automates / facilitates the agreement between the employer and employee as to what is a week and OWD's
:Maxtel

MBIE AND UNION CONSULTATION

Significant amount of work has gone in to get to a position that MBIE is happy with.

Key MBIE feedback

- The system can not be set to walk away, it must allow for a human lens to be applied
- There is no set formula that can be applied to determining an OWD and week
- Gaining agreement with the employee as to what is a week and OWD's goes a long way to being compliant
- An annual check should be completed, to ensure compliance that four weeks leave has been given
M::Maxtel

ANNUAL LEAVE PROCESS SUMMARY

SUMMARY OF ANNUAL LEAVE PROCESS

- Determine what is a week (Number of days \& OWDs)
- Gain agreement (Number of days \& OWDs)
- Calculate the portion of a week (for each OWD)
- Calculate Payment (Greater of AWE \& OWP)

EXAMPLE

'JOSEPH'

(Highly variable Hours \& Days each week)
Ref: Holidays Act 2003 Guide (Page 96)

DETERMINING A WEEK

DETERMINE WHAT A WEEK IS

Refine 13 week and 4 week work patterns (Apply Human Lens)
Remove weeks with abnormally high or low days and/or hours

Select the refined work pattern (13 weeks or 4 weeks) with the highest average weekly hours (CEA requirement)
Total hours paid \div number of weeks paid

Calculate the number of days usually worked in a week
Number of days paid \div number of weeks paid
Roundup to whole number

Select the OWDs based on the highest occurring days or work pattern change (Apply Human Lens)
Number of times a Specific day is paid \div number of weeks paid
Number of OWDs should equal number of days usually worked

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
19/6	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340

Applying a Human Lens to 13 Week Work History:

Eliminate weeks ending $10 / 7 \& 7 / 8$ as the number of days worked are abnormally low

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
19/6	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340

								30.80

Average number of weekly hours worked: 308 hours $\div 10$ weeks $\mathbf{= 3 0 . 8 0}$ hours

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
19/6	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340

Applying a Human Lens to 4 Week Work History:

Eliminate week ending 7/8 as the number of days worked are abnormally low

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
19/6	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340
									28.00		

Average number of weekly hours worked: 84 hours $\div 3$ weeks $\boldsymbol{=} \mathbf{2 8 . 0 0}$ hours

DETERMINE WHAT A WEEK IS

Refine 13 week and 4 week work patterns (Apply Human Lens)

Remove weeks with abnormally high or low days and/or hours
Select the refined work pattern (13 weeks or 4 weeks) with the highest average weekly hours (CEA requirement)
Total hours paid \div number of weeks paid
Calculate the number of days usually worked in a week
Number of days paid \div number of weeks paid
Roundup to whole number
Select the OWDs based on the highest occurring days or work pattern change (Apply Human Lens)
Number of times a Specific day is paid \div number of weeks paid
Number of OWDs should equal number of days usually worked

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
$19 / 6$	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340

Average number of hours worked per week using refined 13 Week Work History $=30.80$
Average number of hours worked per week using refined 4 Week Work History $=\mathbf{2 8 . 0 0}$
Use refined 13 Week Work History (Greatest hours as per the CEA requirement)

DETERMINE WHAT A WEEK IS

Refine 13 week and 4 week work patterns (Apply Human Lens)
 Remove weeks with abnormally high or low days and/or hours
 Select the refined work pattern (13 weeks or 4 weeks) with the highest average weekly hours (CEA requirement)

Total hours paid \div number of weeks paid

Calculate the number of days usually worked in a week
Number of days paid \div number of weeks paid
Roundup to whole number

Select the OWDs based on the highest occurring days or work pattern change (Apply Human Lens)
Number of times a Specific day is paid \div number of weeks paid

Scenario 3: Joseph (Highly variable Hours \& Days each week)

Average number of days worked weekly: 42 days $\div 10$ weeks $=\mathbf{4 . 2 0}$ days Round up to whole number: 5 days

DETERMINING AN OWD

\leqslant
 N

DETERMINE WHAT A WEEK IS

```
Refine 13 week and 4 week work patterns (Apply Human Lens)
Remove weeks with abnormally high or low days and/or hours
Select the refined work pattern (13 weeks or 4 weeks) with the highest
average weekly hours (CEA requirement)
Total hours paid \div number of weeks paid
Calculate the number of days usually worked in a week
Number of days paid \div number of weeks paid
Roundup to whole number
```

Select the OWDs based on the highest occurring days or work pattern change (Apply Human Lens)
Number of times a Specific day is paid \div number of weeks paid Number of OWDs should equal number of days usually worked

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
19/6	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340

| | | | | | | | 4.2 | 30.80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |

Days most commonly worked:

Mon: Worked 8 times in last 10 weeks $=80 \%$
Tue: Worked 7 times in last 10 weeks $=70 \%$
Wed: Worked 4 times in last 10 weeks $=40 \%$
Thu: Worked 6 times in last 10 weeks $=60 \%$
Fri: Worked 7 times in last 10 weeks $=70 \%$
Sat: Worked 7 times in last 10 weeks $=70 \%$
Sun: Worked 4 times in last 10 weeks $=40 \%$

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
19/6	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340

							4.2
30.80							

							5	
80\%	70\%	40\%	60\%	70\%	70\%	40\%		

The 5 Days most commonly worked:

Mon the highest at 80%
Tue, Fri, Sat next highest at 70\%
Thu next highest at 60%

Note: Whilst the system will recommend the number of OWDs and which days they occur, our 'Human Lens' solution allows the user to change the number and OWDs as they see fit. For example the user possibly knows that the Work Pattern going forward has changed and therefore could reasonably select different OWDs

CALCULATING A PORTION OF A WEEK

Cllasen

CALCULATE PORTION OF A WEEK

Calculate hours normally worked for each OWD
Total hours paid on a specific OWD \div number of times a specific OWD is paid
Calculate sum total of hours normally worked for all OWDs Sum total of the hours paid for all OWDs

Calculate what portion of a week for each OWD
Hours normally worked for specific OWD \div Sum total Hours normally worked for all OWDs

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
19/6	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340

| | | | | | | | 4.20 | 30.80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 6.25 | 6.57 | | 7.67 | 8.00 | 8.00 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1713 | 0.1801 | | 0.2102 | 0.2192 | 0.2192 | |
| OWD | OWD | | | | | |

The amount paid would be the 'higher of AWE \& OWP' x 'the portion of the week'
For example: if AWE = \$540, OWP = \$470
then Monday would equal $\$ 92.50(\$ 540 \times 0.1713)$
then Friday would equal $\$ 118.37(\$ 540 \times 0.2192)$

Scenario 3: Joseph (Highly variable Hours \& Days each week)

WE	Days and Hours worked							Num days worked	Total Hours	Gross Pay	Var \%
	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
12/6	4	8	10	4	6	6	0	6	38	\$760	280
19/6	0	0	6	4	10	0	0	3	20	\$400	100
26/6	6	6	0	0	8	10	10	5	40	\$800	300
3/7	0	0	0	0	0	8	8	2	16	\$320	60
10/7	0	0	0	10	0	0	0	1	10	\$200	0
17/7	4	4	0	10	0	8	8	5	34	\$680	240
24/7	8	8	8	8	8	10	0	6	50	\$1,000	400
31/7	8	0	0	10	8	0	0	3	26	\$520	160
7/8	0	0	0	10	0	0	0	1	10	\$200	0
14/8	8	8	0	0	8	4	0	4	28	\$560	180
21/8	4	4	4	0	0	0	0	3	12	\$240	20
28/8	8	8	0	10	8	10	0	5	44	\$880	340

| | | | | | | 4.20 | 30.80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

An alternative approach is to treat each of the OWD's equally (eg Days)
For example: if AWE = \$540, OWP = \$470
then each OWD would represent 0.2000 of a week ($1 \div 5$) then payment for each OWD would be $\$ 108$ ($\$ 540 \times 0.2000$)

Scenario 3: Joseph (Highly variable Hours \& Days each week)

If $\mathrm{AWE}=\mathbf{\$ 5 4 0}, \mathrm{OWP}=\$ 470$

ALL DAYS ARE NOT EQUAL

Hours Approach	Mon	Tue	Thu	Fri	Sat	Total
Hours	6.25	6.57	7.67	8.00	8.00	36.49
Portion of a week	0.1713	0.1801	0.2102	0.2192	0.2192	1.000
Pay	$\$ 92.50$	$\$ 97.25$	$\$ 113.51$	$\$ 118.37$	$\$ 118.37$	$\$ 540.00$

ALL DAYS ARE EQUAL

Days Approach	Mon	Tue	Thu	Fri	Sat	Total
Days	1	1	1	1	1	5
Portion of a week	0.2000	0.2000	0.2000	0.2000	0.2000	1.000
Pay	$\$ 108.00$	$\$ 108.00$	$\$ 108.00$	$\$ 108.00$	$\$ 108.00$	$\$ 540.00$

GAINING EMPLOYEE AGREEMENT

APP
 (PROTOTYPE) DEMO

- Initially employees might want to go through the whole process reviewing all steps
- Great for those armchair payroll expert parents
- Reality is the whole process can take as little as $15-20$ seconds with 7 clicks once employees get used to the process and gain confidence in the calculations

QUESTIONS?

\leqslant
 \cdots

